Large-area synthesis of high-quality and uniform graphene films on copper foils.

نویسندگان

  • Xuesong Li
  • Weiwei Cai
  • Jinho An
  • Seyoung Kim
  • Junghyo Nah
  • Dongxing Yang
  • Richard Piner
  • Aruna Velamakanni
  • Inhwa Jung
  • Emanuel Tutuc
  • Sanjay K Banerjee
  • Luigi Colombo
  • Rodney S Ruoff
چکیده

Graphene has been attracting great interest because of its distinctive band structure and physical properties. Today, graphene is limited to small sizes because it is produced mostly by exfoliating graphite. We grew large-area graphene films of the order of centimeters on copper substrates by chemical vapor deposition using methane. The films are predominantly single-layer graphene, with a small percentage (less than 5%) of the area having few layers, and are continuous across copper surface steps and grain boundaries. The low solubility of carbon in copper appears to help make this growth process self-limiting. We also developed graphene film transfer processes to arbitrary substrates, and dual-gated field-effect transistors fabricated on silicon/silicon dioxide substrates showed electron mobilities as high as 4050 square centimeters per volt per second at room temperature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Large Area Graphene for High Performance in Flexible Optoelectronic Devices

This work demonstrates an attractive low-cost route to obtain large area and high-quality graphene films by using the ultra-smooth copper foils which are typically used as the negative electrodes in lithium-ion batteries. We first compared the electronic transport properties of our new graphene film with the one synthesized by using commonly used standard copper foils in chemical vapor depositi...

متن کامل

Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes.

Large-scale and transferable graphene films grown on metal substrates by chemical vapor deposition (CVD) still hold great promise for future nanotechnology. To realize the promise, one of the key issues is to further improve the quality of graphene, e.g., uniform thickness, large grain size, and low defects. Here we grow graphene films on Cu foils by CVD at ambient pressure, and study the grap...

متن کامل

Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils

Large-area monolayer WS2 is a desirable material for applications in next-generation electronics and optoelectronics. However, the chemical vapour deposition (CVD) with rigid and inert substrates for large-area sample growth suffers from a non-uniform number of layers, small domain size and many defects, and is not compatible with the fabrication process of flexible devices. Here we report the ...

متن کامل

Enhanced Reduction of Graphene Oxide on Recyclable Cu Foils to Fabricate Graphene Films with Superior Thermal Conductivity

Large-area freestanding graphene films are facilely fabricated by reducing graphene oxide films on recyclable Cu foils in H2-containing atmosphere at high temperature. Cu might act as efficient catalysts for considerably improved reduction of graphene oxide according to the SEM, EDS, XRD, XPS, Raman and TGA results. Comparing to the graphene films with ~30 μm thickness reduced without Cu substr...

متن کامل

Significant enhancement of the electrical transport properties of graphene films by controlling the surface roughness of Cu foils before and during chemical vapor deposition.

We have studied the influence of the surface roughness of copper foils on the sheet resistance of graphene sheets grown by chemical vapor deposition. The surface roughness of the copper foils was reproducibly controlled by electropolishing. We have found that the graphene sheet resistance monotonically decreases as the surface roughness of the copper foils decreases. We show that a pre-annealin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 324 5932  شماره 

صفحات  -

تاریخ انتشار 2009